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A mathematical model of the motion of aerosol drops in a thermal diffusion chamber due to the action of thermodiffusiophoresis 
and the gravity force is proposed, taking into account phase transitions on the drop surface. The model includes the equation 
of motion of the drop and an equation describing the change in its radius during condensation. The dependence of the kinetic 
coefficients on the temperature and composition of the mixture is neglected, which imposes certain limitations on the permissible 
value of the temperature change in the region considered. A formula is obtained for the height of maximum ascent of the drop. 
The results of calculations using this formula are compared with experimental data (11 and with the results obtained using the 
free-molecular theory. The proposed model gives more satisfactory agreement with experimental results. 0 2002 Elsevier Science 
Ltd. All rights reserved. 

Thermal diffusion chambers in which aerosol particles are formed during homogeneous nucleation 
are widely used to investigate aerosol systems. The particles formed move due to the action of a 
temperature gradient and the non-uniformity of the composition of the gaseous mixture (thermo- 
diffisiophoresis) and the gravity force, thereby increasing the dimensions due to condensation of vapour 
on the surface of the particles. The results of experimental investigations of the behaviour of a drop 
of dioctylphthalate liquid, formed in a vapour-gas mixture of dioctylphthalate and an inert gas (hydrogen 
and/or helium) were presented in [l]. The experimental data were compared with calculations based 
on the free-molecular model (the “dusty-gas” model) [2], developed for a multicomponent mixture 131. 
However, the drops traverse a considerable fraction of the trajectory in a continuous medium. This 
obviously explains the observed disagreement between the results of calculations using the model 
described in [3] and the measurements presented in [l]. 

Below, in developing the approach in [4-6] to the analysis of the thermophoresis of an aerosol when 
a phase transition occurs on the drop surface, we propose a mathematical model of the motion of aerosol 
drops in a thermal diffusion chamber in a continuous-medium approximation. 

1. FORMULATION OF THE PROBLEM 

The thermal diffusion chamber. Schematically, a thermal diffusion chamber is a system, bounded by 
two surfaces, on which a different temperature is maintained (Fig. 1). The vapour of a liquid, evaporated 
onto the lower heated plate (the temperature of which is r+), is lifted upwards, diffusing through an 
inert gas which fills the whole space between the plates and condenses on the upper cooled plate (the 
temperature of which is T_). In the steady state, the temperature T, and the pressurep, of the vapour 
increase quasi-linearly from the lower plate to the upper plate. Supersaturation (the ratio of the vapour 
pressure to the pressure of the saturated vapourp,lp,) reaches the maximum value in the upper zone 
of the chamber close to the point z = ZO. At this point, where the rate of nucleation is a maximum, as 
a result of homogeneous nucleation, a drop is produced which, as a result of thermodiffusiophoresis, 
begins to move upwards and to grow due to condensation of the vapour on its surface. As the drop 
grows, the influence of the gravity force, which acts on the drop in addition to the thermophoresis forces, 
increases. At a certain height z = zmmax the ascent of the drop ceases, and it begins to fall. The coordinate 
z = z,, was measured experimentally in [I]. 
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Fig. 1 

The equations of motion and mass exchange of the drop. Boundary conditions. Consider the motion of 
a spherical drop of radius R in a thermal diffusion chamber. The velocity of relative motion of the drop 
and the gas, and also the characteristic times, are fairly small, so that the velocity field in the gas is 
described by Stokes’ equation, while the temperature outside the drop is T and inside the drop is Ti, 
and the vapour concentration of the working substance C (the transfer coefficients are constant) obey 
Laplace’s equation 

ATi= rSR; AT=O, AC=O, raR (1.1) 

In the zero approximation with respect to the Knudsen number, the boundary conditions on the drop 
surface (r = R) can be written in the form [7, 81 

V 
Pi’ir -0 pivi,=(y _F j --- CT 

P ‘PI ‘2r 
=_$(g+~?z) (1.2) 
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LPI 

(1.5) 

Here V is the velocity in a laboratory system of coordinates connected with the tied surfaces of the 
thermal diffusion chamber (the bar denotes averaging over the ensemble of gas molecules), the subscripts 
c, i, s, 1 and 2 denote quantities at the centre of mass of the gas mixture, the condensed phase, the 
saturated vapour and the volatile component (dioctylphthalate) - subscript 1, or to the non-volatile 
component (the inert gas) - subscript 2; the subscripts r and 8 indicate the radial and tangential 
components, P, p, k and u are the pressure, density, thermal conductivity and dynamic viscosity of the 
gas, respectively, C = nl/n is the concentration of dioctylphthalate vapour (n is the number of molecules 
per unit volume of the gas), D is the coefficient of mutual diffusion of the components of the mixture, 
L is the specific heat of the phase transition, and k,, k, and kdF are the coefficients of thermal diffusion, 
thermal slip and diffusion slip. 

Relation (1.2) describes the flow of the volatile component on the drop surface, and relation (1.3) 
describes the slip (thermal and diffusion) of the gas along the drop surface. The second term on the 
left-hand side of heat-balance equation (1.4) takes into account the flow of heat liberated (absorbed) 
as a result of any physical-chemical transition of the volatile component, while the third term takes 
into account the heat flux due to the Dufour effect. 

At an infinite distance from the drop T = T,(z), C = C,(z), and at its centre T = To. 
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2. THE TEMPERATURE AND CONCENTRATION DISTRIBUTION IN 
THE REGION OF THE DROP 

We will write the solutions of Eqs (1.1) in the form 

Ti = T,, + Arcose, r S R (2.1) 

R crcosf3+ BrcosO R3 T=T,+tiT:+ dz 
7 rSR 

R dCrcosO+GrcosO R3 t-2 R c=c,+xI_+ dz 7’ 

(2.2) 

Assuming that the non-uniformity of the temperature within the drop 67’i = T#?) - To is small, 
the concentration of saturated vapour in the region of the phase boundary can be expressed in the 
form 

C,(T)= CS(Ta)++ 

From boundary condition (1.4) taking relations (2.1) and (2.2) into account, we obtain 

6T = TO -T,, A = $+B, tiT=T(R)-TO=ARcos8 

As=G+dC X=C(T)-C 
aT dt’ SO 00 

(2.3) 

(2.4) 

Substituting the values of the derivatives of T, Ti and C with respect to r when r = R into condition 
(1.4), we obtain the following transcendental equation for determining 6T 

ST = -N( 1 + k,,)(k + k,N/7-)-‘& (2.5) 

and the following expression for the function A 

$+-$l+kp)T~](l+$+$-(k,+T$+T~kp))-’ (2.6) 

Relations (2.1)-(2.6) determine the temperature distribution inside and outside the drop, and also the 
concentration distribution of the volatile component. 

The temperature distribution of the medium and the concentration distribution of the saturated 
vapour over the height of the chamber h, can be calculated in the linear approximation from the 
formulae 

dT/dz = (T+ - T_)/h, dCldz = (C,(T+) - C,(T_))/h 

The temperature dependence of the relative concentration of the saturated vapour of the working 
material can be represented by the formula 

C,(T) = Ps0-V 

The following approximate relations are assumed for ki and kdS [9, lo] 

k,(T)=+(T) M1-M2 , 
IM,-%I 

kds=_$+ 

where MI is the molecular mass of the working material of dioctylphthalate, and M2 is the molecular 
mass of the inert gas-carrier. A value of k, equal to unity is used in the calculations. The coefficient of 
viscosity of the gaseous mixture is found from the formula 
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c1= 
(1 -C&h a2 

I-C+C$k2 +c+(I-c)~,,’ 

o2 = [I+(lh IP2P(M2 WY412 

[8(1+ Mk / M2)Ix 

The subscript k denotes that the corresponding value of the viscosity is taken for helium or hydrogen. 
The vapour density and the density of the gaseous mixture are calculated from the following formulae 
(Rs is the universal gas constant) 

PI =$!$ p=p,[,+$-.&)] 
The functions and coefficients in the dioctylphthalate-hydrogen and dioctylphthalate-helium systems, 

used in the calculations, are taken from [ll]. 

3. CALCULATION OF THE THERMODIFFUSIOPHORESIS FORCE 

To calculate the force acting on the drop from the non-uniform gaseous mixture (the thermodiffusio- 
phoresis force), we will use Stokes’ solution for the gas velocity field. According to this solution, the 
components of the gas velocity on the drop surface can be represented in the form (y is the velocity 
of the centre of mass of the gas relative to the drop) 

v, = v,cosf3(1-2a+26), ve =-v,sin9(1-a-b) (3.1) 

On the other hand, the radial and tangential velocities on the drop surface can be expressed in terms 
of the diffusion velocity vd and the slip velocity vsl in the form 

v, = v ‘O’ + v, cos8, us = us, sin 8 (3.2) 

(do) is the spherically symmetrical part of the radial velocity). Taking the second condition of (1.2) and 
condition (1.3) into account, we obtain when r = R 

(3.3) 

Taking expressions (3.1) and (3.2) into account, we can write the aerodynamic drag force, and, taking 
expression (2.6) into account, the heat flux per unit area of the drop surface 

(3.4) 

The spherically symmetrical part of the radial velocity Jo) defines the change in the mass of the drop 
(the integral is taken over the drop surface S) 

(3.5) 

On the other hand, the change in the mass of a spherical drop of density pi can be written in the 
form 

dm - = 4nR2pi f 
dt (3.6) 
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Comparing expressions (3.5) and (3.6) we obtain the following equation for the square of the radius 
of the drop 

a2 =I 

dt 0, I, =z 
P;L 

(3.7) 

The conditions on the boundary of the working volume, describing the phase transition of one of the 
components of the gaseous mixture and the unpermeability of the boundary for the other component, 
determine the velocity of the centre of mass of the gaseous mixture (usually called the Stefan flow velocity) 

“,, =-$($++$) 

4. THE HEIGHT OF ASCENT OF THE DROP 

(3.8) 

The equation of motion of the drop from the instant of nucleation, taking into account the change in 
its mass due to condensation, can be represented in the form 

d(mv) dm 
--vtn dt 

dt 
- = F - mg, 

The velocity v of the drop in a system of coordinates connected with the hxed walls of the chamber, 
is equal to the difference v = vst - v,. Then, taking the second expression of (3.4) and formula (3.6) 
into account, we write Eq. (4.1) in the form 

dv _ Cp - W(r) 

27 R’(r) -’ 
(4.2) 

We will consider the system of two first-order ordinary differential equations (3.7) and (4.2) with the 
following initial conditions 

R’(O) = h’,z 

(4.3) 

To determine the heat flux I we need to obtain from transcendental equation (2.5) the temperature 
difference between the drop and the gas surrounding it U(z), and also the temperature at the centre 
of the drop TO(z), which is used, in turn, to calculate the temperature functions in system (3.7) and (4.2). 
Hence, I,, CD and Y are functions of time, since they depend on the temperature, which varies along 
the height of the chamber. However, in the first approximation, we will assume them to be constant 
quantities. (A numerical solution of the problem showed that, under the conditions considered, this 
assumption is completely acceptable for practical purposes). This enables us to write immediately an 
analytical solution of Eq. (3.7) with the first boundary condition (4.3) in the form 

R’=I,t+R,Z 

Taking expression (4.4) into account, Eq. (4.2) can be integrated in explicit form 

(4.4) 

(4.5) ( 1 
P 

v (t) = (v (0) - q ) ‘+I 
Y 

+ a2t + a, 

Y & 
a’ =&-@+I* 

a2=_* p=_; YAj 
0 



96 S. P. Bakanov et al. 

Integrating Eq. (4.5), we obtain the following expression for the coordinate of the ascent of the drop 

Z(I)Zi P+1 
0 

-I +y+c_J,t+r, 1 (4.6) 

For these systems 1 PI S 1, and hence the first term on the right-hand side of (4.5) is a rapidly 
decreasing function of time. Consequently, the expressions for the velocity and coordinates of the ascent 
can be written, with sufficient accuracy for practical purposes, in the form 

I 
u(t)=a2r+a,, z(t)=-a2t2-ta,t+zo 

2 

At the point of maximum ascent the velocity of the drop is equal to zero. Hence, we obtain the 
following formula for the maximum height of ascent 

(4.7) 

The results of calculations using formula (4.7) are practically identical with the solution obtained 
using the complete expression (4.6). 

5. DISCUSSION OF THE RESULTS 

Calculations of the maximum height of ascent of a drop for three values of the total pressure in the 
chamber (P = 4, 8, and 16 kPa) and four values of the chamber height (h = 14.55, 22.2, 29.4 and 
37.4 mm) correspond to the data for which experiments have been carried out [l]. The initial value of 
the drop radius was taken to be R. = 1 pm. A comparison of the results of calculations and experimental 
data in a dioctylphthalate-hydrogen and a dioctylphthalate-helium system is presented in Fig. 2, where 
we have plotted the experimental values of the relative heights of ascent of the drop 4 = (zmax - zo)/h 
along the abscissa axis, and the corresponding theoretical values along the ordinate axis. The dark circles 
correspond to calculations from formula (4.6) and the light circles represent the results obtained using 
the free-molecular theory [3]. The continuous and dashed lines are the corresponding linear 
approximations, calculated by the method of least squares. 

As has already been noted [l], the free-molecular theory for large values of 6 predicts a higher 
maximum height of ascent of the drop compared with the observed values. The reason is obviously the 
fact that in this case a considerable part of the path of the drop takes place under conditions of a 
continuous medium. The proposed model gives qualitatively better agreement with experiment. In fact, 
it can be seen in Fig. 2 that the continuous line agrees much better with the dash-dot line than the dashed 
line (the dash-dot line corresponds to complete agreement between the theoretical and experimental 

Fig. 2 
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results). We are inclined to think that some of the quantitative discrepancy is the result of a lack of 
perfection in the model and also due to the simplified assumptions which were made when carrying 
out the calculations. 

This research was supported financially by the Academy of Sciences of the Czech Republic 
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